SELF-CONSISTENT SOLUTIONS OF SOME PROBLEMS
OF HEAT AND MASS TRANSFER IN A SATURATED
POROUS MEDIUM
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and G. A. Khalikov

Self-consistent solutions of systems of heat conduction and filtration equations in regions sepa-—
rated by mobile boundaries are considered.

The heat-conduction and filtration equations describing the processes of heat and mass transfer in satu~
rated porous media are encountered in a whole series of problems, including: the drying and purification of
porous bodies [1}; the destruction of solids, accompanied by physicochemical conversions and the subsequent
transfer of individual components within the porous material formed [2, 4]; thermal methods of intensifying
the extraction of useful minerals — high-viscosity petroleum, bitumin, sulfur, gaseous hydrates [5-7], etec.
The mathematical formulation of these problems involves complicated versions of the Stefan problem.

In the present work, self-consistent solutions of one class of such problems are obtained in a more
general formulation. The case considered is that in which the pressure and temperature at a mobile boundary
are unknown, but the functional thermodynamic phase-equilibrium dependences relating them is known. In
contrast to certain of the works cited above, more precise conditions of material and thermal balance at the
mobile boundary are given.

Suppose that a saturated porous medium occupies the right-hand half space x > 0, and that at the surface
x = 0 heat is supplied to the medium, With time, the temperature of the medium increases, and the material
to be extracted, initially present in the pores in the solid state, gradually melts. The melting surface I(t)
separating the liquid and solid phases moves to the right, and the liquid phase filters to the left; this transfer
may be produced by pressure reduction at the boundary x = 0 using pumping out of the melt or else as a result
of increase in pressure inside the medium by heating [2, 3],

Heat loss due to heat transfer with the surrounding medium is neglected. Use is also made of the fact
that the time for the liquid-phasetemperature toequalize with the temperature of the porous-medium mass is
much less than the total duration of the heating process [7].

The temperature distribution in the first region may be described, in the case of constant thermophysi-
cal parameters, by the linearized equation of convective heat transfer [5]
BTy T, Ty
o T U ox ' ot
where Ay = Ap(l—m) + Aym and ¢4 = pyeym + pycy(l—m) are the mean thermal conductivity and bulk specific heat
of the first region; pg is the mean liquid-phase density; and
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Here and below, the subscript 0 refers to the body of pores; 1 fo the liquid phase; 2 to the solid phase;
I to the region 0 < x < I(t); and II to the region I(t) < x < =,

In region II no liquid phase is present, and therefore the temperature distribution is described by the
equation
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The following boundary conditions are taken in solving Eqs. (1) and (3)
T, 0 =T Tul 0)=Tylw, =T
T, =Tyl D

At the surface I(t), the heat-balance condition is satisfied

T,

—h dx

The pressure distribution in region I is described by the non-steady-filtration equation
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For this equation the following conditions are satisfled:

p©. &) =pg,

p, dt

The last condition expresses the mass balance at the limit of solid-phase melting,
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In the general case, the pressure and temperature at the surface I(t) are unknown, but are related by

the equation of the phase-equilibrium curve

T, y=Flp, Hi=Tp.

As a rule, the dependence T = F(p) is determined experimentally in each specific case.
The problem in Eqs. 1)-(10) is closed, and admits of self-consistent solution,

The solution of Eq. (7) is sought in the form
p(2) = Aerfz + A,
where erfz is the probability integral; z = x/2/%t is a self-consistent variable.
1t follows from Eq. (8) that A, = pg. Substituting Eq. (11) into Eq. (9) gives

A= 0B exp( 4)[; )Vft?t %ﬁ— = const.

k 0,

Hence, it follows that

Vot —j—i— = const, —l:—(?— = const = B2,
%

where B is an arbitrary constant.

Then Eq. (12) takes the form

A = Vﬁ% __Pz;‘Ps Bx exp (B?).

1090

(10)

an)

12)

13)



The final result obtained for Eq, (11) is

p=p+ ";” Pzp Oy aprexp (B eriz. (14)

1t follows from Eqgs,. (1) and (14) that
v= e (= b= m Bl g ey ). (15)

8

Substituting Eq. (14) into Eq. (1) gives

a:r ] ( x2 ) oT, 0T, (16)
eXp — = »
Vt dnt | ox ot
where
g =21, 8= g
101 %

Assuming that T1 and Ty are, respectively, functions of the self-consistent variables

X X
2y = y 2y = =,
! 2 i/ alt 2 2 l/ art
Eqgs. (16) and (3) are written in the form of ordinary differential equations
Ty ] 22 aT, ”
w e e )] m e vV a “
&aTy, dTy _
dz'g" + 2z, —d;;" =0. {18)

Integrating these equations, and determining the constants of integration from Egs. (4), (5}, and (10),
it is found that

¢(21)
Ty =T —(G—T) 19
¢ — g By (19)
erfc z,
Ty=T, Ty —T 2
n =T+ (Tp—T,y e (20)
1% 1(H)
= —— 2 = const, = = const, (21)
" Vet B VO
£
erfct — 1 —erit, @) = yexp[—az—i—ev V - _._] do,.
0 Vi
The pressure at the melting surface is found from Eq. (14)
P, 8 =pgr T B "s V/ npxexp (B9 erf . (22)

Then, in accordance with Eq. (10), the unknown temperature Tp in Egs, (19) and (20) is determined with the
known dependence

=Flp{@, 1.
The law of melting-surface motion may be determined from the first relation in Eq. (21)

1) =20 Vet (23)
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Thus, Egs. 14), (19), (20), and (23) comprise the solution of the problem, which will be completely
solved if the constants 8, vy, and ¥, are determined.

1t follows from Eqs. (13), (21), and (23) that

0 4
B——v » Y2 =" o

Substitution of the values of v({, t), Ty, Ty, and I{t) into Eq. (18) gives, taking the last two relations
into account, a transcendental equation for ¥,

| oy B\ T
A., (TG :Tp) exp [ Yl 70 eXp ( v ) el'f Vv ]
2V q P (v1)

exp (v 2 )
M (Tp —Ty) a

Vaa,  eric (y, l/ﬁl_)
ay

g=Vnvm 80
&

= (L + e,TpYmpy, Vay, (24)

The value of Tp = Tp(n) is determined from Eqgs. (10) and (23).

The expressions obtained may be simplified in the case of quasisteady liquid-phase filtration. In fact, in
saturated porous media as a rule, % > aj, i.e,, the pressure perturbation propagates much more rapidly than
the temperature perturbation [7]. The quantity v;, characterizing the velocity of melting-surface motion, is
usually of the order of unity or less. Then

K3 Y1
V=l/z;‘>>l, = V<<1

Setting
x x 2 X
expP =1, erf ——= <Lerff =~ —=—
PR 2Vt P L) Vo L)
in Eq. (14) yields an expression for the pressure
2mpy P —P, x
=p 4 — s Ry - 25
P=p, p o B 0 (25)

It is simple to establish that this expression is the solution of Eq. (7) for = » and satisfies the boundary condi~
tions in Egs. (8) and (9).
The constant 8, as before, is determined from Eq. (13). The filtration rate is

8, — p2=-P
v=—m 2, 8 =mpyYx ——,
Vi ’ 0
and, accordingly, there are no exponential expressions in Eqs. (16) and (17), and ¢ is replaced by the quantity
g =P g
G] 0
The solution of Eq. (17) takes the form
o a ) o
T, =Ty — (T, —Tp) &t O —erfd =y . (26)
' G et (et ) —erl Ve

Note that this expression may also be obtained directly from Eq. (19) if the function ®(¢) is simplifiedby
the means indicated above, and the integral is evaluated,
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Thus, in the case of quasisteady filtration, the pressure and temperature in the first region are deter-
mined from Egs. (25) and (26), while Eqgs. (20) and (23) remain unchanged. To determine v,, Egs. (6), (20),
(23), (25), and (26) yield the equation

M(Tc—Tp) exp (— 1 — g'p)* Ay (Tll: Ty)
V erf (p; 4 ¢'yy) — erfgly V nay
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Consider, as an example, the melting of a bitumen mass in a porous medium using a heater. The fol-
lowing parameters were adopted in the calculations for the thermophysmal quantities characteristic of petro-
leum deposits: py = 2500 kg/m?; p; = 800 kg/m3; p, = 950 kg /m?; cg = 750 J/kg -deg; ¢y = 2000 J/kg - deg;
¢y = 2000 J/kg/deg; Ay = 1.38 W/m - deg; Ay = 0.17 W/m -deg; Ay = 0.5 W/m-deg; L = 167-10% J/kg;
ay = 0.625 -10~% m?/sec; agy = 0.708 +107¢ m?/sec; Ty=30°C; Tpp=60°C.

The values of y; calculated from Eq. (27) for a temperature drop T — Tp in the first region of 40, 90,
and 180°C are 0.425, 0.875, and 1.125, respectively.

Knowing vy, the expressions given above may be used fo calculate such characteristics of the
given process as the temperature and pressure fields, the liquid-phase filtration rate, and the coordinate of
the melting surface as a function of the time. For example, the melting depth I(t) of the bitumen mass deter-
mined from Eq. (23) after 100 days with the above temperature drops are found to be 2,19, 4.50, and 5.78 m,
respectively,

NOTATION
is the coordinate;
t is the time;
T is the temperature;
Ta is the temperature at the coordinate origin;
Tp is the phase-transition temperature;
T, is the initial temperature;
A is the thermal conductivity;
c is the specific heat;
o is the density;
v is the filtration rate;
k is the permeability;
m is the porosity;
o is the viscosity;
n is the piezoconduction coefficient;
a is the thermal diffusivity;
L) is the phase-transition surface;
P is the pressure;
PG is the pressure at coordinate origin;
Pp is the pressure at phase-transition surface;
Z, Zy, Zy are the self-consistent variables;
A and A, are the constants of integration;
By Y1, V2 are the constants;
erf is the probability-integral symbol.
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USE OF WATSON OPERATIONS IN THE SOLUTION
OF SOME PROBLEMS IN THE THEORY OF
THERMAL CONDUCTIVITY

M. A, Bartoshevich and A, P, Prudnikov UDC 517,947.43
The Watson transform method is used to obtain analytical solutiops of certain nonstationary

problems in the theory of thermal conductivity for variable regions with a specified law of bound-

ary motion.

We will consider the following problem: we must find a solution of the thermal conductivity equation

ou ., Ou
ot ¢ 0x2 @)
in the region lj + bt = x = I, + bt, I3~ =1 > 0, = <t <o, which satisfies the initial condition
ul,__,, =0 2)
and the boundary conditions
94 = by (8), 3)
ox x==l bt
Wi =12 ®- 4)

Here a, b, 1, 1,, @ are constant parameters, We will seek the solution of Egs, {1)-(4) in the form of the sum
of thermal potentials of a simple and twin layer [1, 2]
t {x--1,—bs)* t (Xl ybs)?
a p1(5) ~ Tdat (1—s) l (x—bL—bs) — Gama=s—
- e -ds = ) ——= 71

2y n _‘S; Vi—s + 4aVn _j,, () {t —s9*? ¢ ds, ()
where p(t) and p,(t) are unknown functions, to be defined from boundary conditions (3), (4); initial condition (2)
is satisfied automatically. To define p;(t) and p,(t) we obtain a system of Voltaire integral equations of the
second sort

ulx, )=

0O N PR —8 o =1, 2
hi (t) = (—— 1) ——5— +12=1 Cij _iK!J (t S) P; (S) ds (l ; 4 )’ (6)
where
1 b
Ku(x) = l/; exp (-— Yo x) »
@1 1b — a*al 2 b2 + 20u?b Px b 2
Kia ()= ( a2*’? T o T om2 Vx )exp (._ 4a? + 4> 4o’x ) '
1 .27 b 2
K‘M (x)"‘ —177;‘—: exp (_ Aa? 4g? - 4y ) ’
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